
▶
Applying Big Data concepts

for analytics and
visualizations at any scale

HOW BIG
IS BIG?

http://www.yaharasoftware.com

▶* Source: http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf.

Current estimates say that by 2020 there will be more
than 40 zetabytes of data (about 5,200 gigabytes per person).*

While most companies will work with just a small fraction of this available data,
the challenges they face in aggregating and organizing their data can benefit from
approaches similar to those used in big data analysis.

Generally, big data projects follow the same process: acquire the data, align the
data, store it for future use, and then shape it for analysis. Therefore, while each data
aggregation project is as unique as the customer problem it addresses, there are
universal questions to ask that can set you up for the best overall strategy to fit
your needs.

http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf.

▶

Big Data system architects commonly consider The Four V’s when designing a data centric
solution. Throughout this article, keep in mind how the four V’s of big data apply to your
situation (even if you may not have big data) as you consider each decision you make:

For more info, check out a cool infographic here: http://www.ibmbigdatahub.com/infographic/four-vs-big-data

BEFORE YOU GET
STARTED

The Four V’s of Big Data

VOLUME How much data is there, both total
and from each source individually?

VELOCITY How fast can you get to your data?
Does it differ by source?

VERACITY How uncertain is each piece of data?
How much can it be trusted?

VARIETY How many different kinds
of data do you have?

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

▶

 The first step in data aggregation for analysis and visualization is to find all the relevant
data and collect it in the same place. Typically, this involves setting up a way to acquire
the data you need on a regular schedule and placing the data within the correct storage
location once you have it. The best acquisition method will vary by the type of data and
local storage methods that each company employs.

DATA ACQUISITION
AND TRANSPORTATION1

How do you get your data and move it around?

The following considerations will help you and your software provider narrow down which methods are right for you:

How is the data stored?
Your company probably has data in multiple locations and in many
formats, so finding your data and determining its local layout is the first
step in aggregation. Do you have a centralized database or multiple data
sources within your company? Is some of your data kept in an Excel or
.csv file that can be collected periodically? Is it streaming data from an
internet connected device? Or is it stored in a local system where a web
service or API could be used to collect the data?

How often do you want to acquire new data?
After you have your data collection strategy decided upon, you will need
to determine how often it needs to be integrated into your analytics
processes. Is it sufficient to view historic data current to the last quarter,
month, week, or day, or do you need by minute to minute updates? If
you are accessing your data more infrequently, then sending all the data
as a batch can be done during off hours, increasing the performance
of queries against the data during the day. If you need more frequent
updates, then you will likely want to pursue a method of sending data in
frequent small packages, or even streaming. These methods assure that
you have close to real-time data, but can take a toll on performance.

How much data is being collected at the
intervals you’ve selected?
Now you can begin to design your data workflows, but deciding what
technology to use will depend on the structural characteristics of the
data payloads you are moving around. Is it in large chunks (such as a
batch of long distance driver logs) or in discrete pieces (like individual
laboratory test results)? Most integration and data aggregation
approaches leverage some type of messaging infrastructure to
implement workflows. The size of your data chunks will help you decide
whether to send messages that incorporate the data or to migrate the
data as a chunk to temporary storage and then send messages with a
location reference so that the data can be retrieved later in the process.
As above, there are considerations for each choice. Messages that
incorporate data tend to streamline development, but messages with
location identifiers can improve performance and increase modularity

of the system, making it more traceable and easier to adapt to change
in the future. These considerations can also influence the tool selection
process as many systems are only designed to accepted data as part of
the message payload.

Can you retrieve your data again?
In many cases you need to plan for the possibility that
information may be lost or corrupted during the collection
and processing steps. Generally, when more traceability and
modularity built into a system, it is easier to pinpoint where
something went wrong and correct the issue. If your source
data is stored in a file or database, then it is likely you can go
back and reload the data if something unexpected happens.
However, if you are collecting a live stream or a rolling log
you might not be able to retrieve it again. The impact on data
loss or corruption will be different depending on the methods
you’ve chosen to acquire and move the data.

How will you monitor data flow and clean up
any errors?
Like the old adage goes, “Hope for the best, but plan for the worst”.
Once you’ve made your choices on how the system should be set up,
you need to know what to do when something goes wrong. Plans for
downtime and the inevitable case where data is unavailable need to
be put into place so that operations don’t grind to a halt if your access
to the data goes down. In addition, you will need to think about a data
clean up strategy in the case that inaccurate or misplaced data gets
into the system. In the case of inaccurate data, it is useful to know what
actions were performed against the data before it got to storage. This
includes what source it came from, what manipulations where done on
it, and when it entered the system? It is also important to consider the
possibility that decisions could be made based on the inaccurate data
and determine a plan of action to prevent and correct any harm done by
these events.

▶

When pulling data from disparate sources it is common to find it difficult to isolate key
identifiers because the data sources aren’t identical. Think of a patient who goes to see
their doctor, goes to a lab for a test, and then pays for it via insurance. The patient is the
same in each case, but the doctor, the lab, and the insurance might use different identifiers
in their database to store the information (patient id number, test result id, insurance
policy number). Even in the cases where each organization keys on the same attribute (e.g.
patient id number) each organization may use a different locally-sourced identifier for the
patient. Because of this difference in local data storage and indexing, you typically need
to normalize the keying of acquired data using techniques such as generating a common
index or through heuristic matching. No matter what method you use, you want to keep
the acquired data as close to the source data as possible to increase traceability later on.
This allows for easier monitoring and recovery of the process in the case of errors
or downtimes.

DATA ALIGNMENT2
How do you make sure your data is apples to apples?

The two big questions in data alignment are: how to match up the data and how to monitor the process.
How will you monitor the alignment process?
Not only do you want to make sure you are still acquiring data, but you
want to make sure that your data is still arriving in the format you expect.
For this, you will want to set up a protocol for data quality assurance
to check for any issues with the alignment process. For example, you
will want to know if the data is coming in the expected format, if all the

parameters being used in the alignment algorithm are present in each
data package, etc. Often, this process can be automated, having the
system send out periodic reports and exception logs. However, sometimes
companies also require a manual QA process to spot check the data for
issues that cannot easily be detected by automated processes and the
integration approach chosen may need to incorporate this manual step.

Primary key: Option one is that you have a primary key that matches up
each table, with or without translation. In this case, your data is already
set up to be compared or you have a direct comparison table that allows
you to say that the primary key for one table is equivalent to the primary
key on another table. You then simply align the tables containing your
data using the shared primary key.
Indexes: Another option is to use an index that allows you to connect
one table to the next. This is especially handy if you don’t have a natural
primary key to link to. For many common types of data, there might
already be a centralized index that can be used such as the common
patient index or CODIS (the combined DNA indexing system). If there isn’t
a common index, you will need to generate one from within your system
that can serve for your data.

Heuristic matching: Heuristic matching allows you to align one
aggregated set of data to another through a matching criterion of your
choice (temporal alignment is a frequent choice). You might choose
to aggregate your data for the sake of performance or analysis, or that
might be the only way the data is available to you for security purposes.
Heuristic matching for data aggregation is common, for example, in
healthcare where you get aggregated blinded data to protect individual
patient information. It is crucial that you employ sound statistical analysis
to ensure that the algorithms used in this type of matching are correct
and not providing correlations that are misleading to the users of the
information.

How will you match up your data?
There are many mechanisms you can use for aligning data. Here are three commonly employed methods.

▶

DATA STORAGE AND
SCALABILITY3

How will you keep your data accessible for analysis
now and in the future?

Once you have divined your data sources and know how they are to be related with one
another, you’ll want to extract portions of that information to a common platform in order
to be able to access it for analytical purposes such as predictive studies or KPI dashboards.

The appropriate storage platform will depend on multiple factors, but two overarching
questions to ask at each point are how durable and how scalable do you need it to be?
Durability can be thought of in terms of system availability and security. If you didn’t have
access to your analytics system for an hour, a day or several days how does that affect your
operational situation? Scalability is a measure of both how many people need access to
the data and how much data you plan to accumulate and maintain operationally at any
time.

To determine the best storage strategy for a given use case, consider the following options:

Cloud vs. Local storage
Cloud storage can be an attractive option for those that do not want to set
up data storage operations in house and are typically scalable in a very
affordable way. They also tend to be durable from the standpoint that by
replicating data and storing it in separate locations you can potentially
decrease downtime at a very reasonable cost. However, you have less
control over your data from the standpoint that if the storage company
experiences a downtime, so will you. Conversely, storing data locally can
provide you with direct control over its accessibility and performance
tuning. Local storage can also be highly scalable, but it makes you
responsible for maintenance and security and setting up environments
that can scale locally can be quite expensive.

OLAP Structured vs. Unstructured Storage
OLAP structured storage has been traditionally the most commonly used
method for designing data warehousing solutions, each bit of operational
information gets broken out into containers organized by a business
domain hierarchy and then these containers are related to each other
using dimensions such as age, gender, or date range. Traditional data
warehouse requires shaping data before storage, because each bit of data
has a defined location within the structure. Because of this, data is not
stored in its source form, but it is readily and easily available in the correct
format for analysis later on. However, in order to introduce new data types
to the system, the database will need to be updated to receive these types
of data.
Unstructured storage mechanisms such as NoSQL or document databases,
distributed file systems like Hadoop, and highly scalable raw file or
BLOB (binary large object) storage have recently been leveraged to
accommodate situations where locking the inputs to one single data
structure over time is untenable. Unstructured storage simply stores
data as it comes, often using an indexing scheme to speed retrieval. No
overarching structure is imposed on the data during the storage process
and the hierarchy and attributes of the data are “discovered” during
the analysis process using technologies focused on working with large
amounts of potentially disparate data. Unstructured frameworks are
generally used for modern, highly available systems (such as Twitter or
Facebook) where companies want clients to have continual access to past
data while they are updating their infrastructure. The clear upsides to
unstructured storage are the ability to store data in the format in which
it is received, the ability change data structures without downtimes,

and the ability to design your current applications without the need to
accommodate data changes in the future. The downside of this lack of
structure is that you have to build the database rules into the software
applications that are accessing the data and complete any translations
of format on the fly as you are using the information. Unstructured data
storage by its very nature does not enforce data consistency, and favors
speed of collection over database input so if you are trying to create
operational procedures around data collection, the forced the consistency
of traditional data storage can support that operational initiative in a way
that unstructured storage may not.

Centralized vs. Federated data services
Another importance choice, especially for those that have satellite sites
or more than one base of operation is the decision to create a single data
service or to employ federated data services.
A Centralized data service is exactly what it sounds like, you are storing
all of your data in one location. Single data services typically have good
performance characteristics and since all the data is in your own database,
you have more control over how to acquire and shape the data. However,
this means that you also have all the responsibility for performing those
manipulations locally. This is beneficial if your data partners consuming
the information must depend on you for packaging that data payload in a
formal structured format.
Federated data services gather analytical data from multiple related
sources using an agreed set of rules. Typically, the consuming system
doesn’t store the data provided, such as in cases where blind data or
aggregated data is all that can be provided rather than the raw data or
identified data. It can also be useful in the case where you have multiple
locations with separate data storage or acquisition methods. Federated
data services also distribute the load of acquiring and shaping data
between partners, so that no one partner has the entire performance
burden of manipulating the data. Lastly, because you don’t store all the
data onsite, federated data services can make scaling data easier, you
simply add more partners to the federation, or access more data from
individual partners, instead of needing more space to store data.

▶

HOW ARE YOU SHAPING THE DATA?
When employing a traditional data warehouse approach, data shaping is
generally accomplished via extract-transform-load (ETL) operations prior
to storage in a data warehouse. As mentioned above, data warehouses
necessitate translating, reshaping, and manipulating data into a fixed and
set structure defined by the storage schema. However, systems based upon
NoSQL storage types generally defer the data shaping operations to the
point in the process in which the analysis is occurring. Both methods have
different advantages and tradeoffs that must be considered.

Data Warehouse vs. Unstructured Data Aggregation with
Dynamic Data Shaping
Shaping data after collection allows for more flexibility by allowing you to
easily store data that is related but not all in an identical format. You can use
the same data (or subsets of the data) for different use cases, shaping only
what you need on the fly, and not continually reorganizing how the data is
stored to support your analysis needs. Instead, temporary in-memory data sets
are built quickly, used to do the analysis, and then disposed. Unstructured
storage techniques simplify storage, allow the system to take full advantage of
all the ways in which the data can be queried, and allow for incorporation of
additional disparate data sources into the analysis process without redesigning
and loading a data warehouse. However, the architecture needed to efficiently
shape unstructured aggregated data is very specialized and can be quite
expensive to build and maintain. Thus the traditional methods of data shaping
during the ETL are not without its perks. If your data sources are small and
change infrequently data warehouse solutions are reasonably cost effective to
implement and comparatively simple to maintain. Since all the data is already
in the right format, ad hoc queries against it typically take less time to process.
Additionally, since less shaping is done before passing data to the consumer,
processing time can be streamlined there as well. With data warehousing you
need to set up schemas for new data types and reconfigure your database
before you gain access to new types of data.

If you are doing dynamic data shaping, can you do batch
processing or do you require streaming analytics?
Typically, it is acceptable for data shaping to be performed with a batch
approach on a set frequency. A batch job is executed with rules for shaping
the data and the entire dataset is rebuilt during the job. The result of this data
shaping is then typically cached in memory to be used by data analysis and

visualization tools. Because of the performance needs, this process typically
run on a periodic schedule while few users are on the. For operational data,
a nightly update is generally more than adequate to meet the needs of a
company. However, if you need your data updated more frequently at times
when users are viewing the data a streaming analytics may be indicated. With
streaming analytics, you reprocess the data on the fly depending on how the
user requests it. Because of this, queries have to be focused so that processing
is as efficient as possible. Streaming data can be performance intensive, but
allows users to request up to the minute data from the system. It is important
to know the answer to this question as it can greatly influence the selection of
data shaping tools and technologies.

What tools appropriate for your data shaping choices?
Data shaping can be very complex, but as with other areas of software, there
are a lot of tools that can help. Choosing the right tool or tools depends on
a number of factors, such as the storage method or platform you chose and
what kinds of data shaping and analysis you want to do. If you are doing
traditional data warehousing, the data platform you choose typically dictates
the ETL tools you can use. For example, Microsoft SQL Server has its own
Integration Services platform (SSIS) that allow you to perform common
ETL tasks in a tool that is very user friendly and requires just a base level of
SQL knowledge for most tasks. If you are using unstructured data storage
and taking the dynamic data shaping approach, there are numerous tools
available that focus on solving different aspects of ad-hoc data organization
shaping. Some examples that grew mostly out of the Hadoop infrastructure
and all have slightly different strengths are Apache Storm, Spark, Pig, and
Hive. These tools have been further extended and adapted to work with many
of the NoSQL databases that exist. To further complicate matters some of
these tools support multiple programming languages so you need to choose
the best fit based on the capabilities of your development team and which of
them best supports your analytics requirements. For example, Apache Spark
supports Java, Scala, Python and R programming languages and use of each
has their own use of pros and cons that needs to be considered. Other cloud
platforms such as Microsoft Azure and Amazon Web Services have analytics
tools that are optimized for working with their data platforms and are good
options if you are exclusively using those platforms and need a high level of
scalability. Typically, software development firms will have a preferred tool for
each application and can help you decide which tool is right for you.

DATA SHAPING4
How do you best transform your data for analysis?

Both methods have different advantages and tradeoffs that must be considered.

Data shaping is the process by which relevant data to your analysis question is pulled
from the database and ordered in a way that you can use to answer your question in
a reasonable timeframe. Data shaping involves further categorizing and aligning your
data for analysis. For example, if you were looking at patient data, you might have test
results in raw form, diagnosis and visit summaries from providers that include test
that they ordered, the prescriptions that were issued, and the prescriptions that were
filled. Now, let’s say you wanted to know what patients were diagnosed with diabetes,
prescribed a medication, and filled that medication. You might approach this by linking
this information using one of the techniques described above and then transforming the
information into a normalized collection based around the relationships between patient
ids, diagnosis codes, test result codes, and visit dates

▶

DATA SECURITY AND
DATA GOVERNANCE5

How do you make sure your data stays in your system and
your users have appropriate access to the data they need?

Everyone wants to make sure that their data and their users are secure. When it comes to
security, there’s one golden rule: Don’t write your own. In almost every case, it is better
to use what is out there. The methods available on the market have already been stress
tested by the public, thus working out most of the kinks and weaknesses. If you create your
own, you run the risk of it failing at the first attack. That being said, the level of security
you choose and the methods you employ will depend on the data you are securing. There
are many different levels of security to choose from, but you’ll want to weigh them against
the ease of access for you users and the cost to maintain them going forward.

There are many different levels of security to choose from, here are some things to consider.

Encrypt your data –
When using a web API to transport data, the best security is to use TLS
encrypted connection. TLS usually involves sharing public keys between
sites. Once data is ready for transfer, a handshake takes place and private
key is agreed upon. Then any communication that occurs uses the key
decided on during the handshake. This process secures your connection
between sites and prevents eaves dropping
during transfer.

Only store the data you need –
In some cases, you need individual data points, but in the case where
aggregated data will do, you can secure you data by only storing
aggregated or blinded data on your site. While this doesn’t secure the
stored data per se, it does ensure that any information stored on your
site can’t be easily traced back to the original data, which by nature is
more sensitive than the aggregate.

Use second factor authentication –
For some data, especially those that are subject to additional regulations
such as HIPPA or PCI, additional security steps can be added that send
information to phone or other device. The owner of that device then
inputs the code back into the software. More secure second factor
alternatives are apps like Google authenticator, which you download to
a device where it generates a new 6-digit number every 6 seconds. The
user then simply uses the generated code as authentication on the linked
site. Lastly, there are traditional hardware methods of second factor
authentication such as RSA key or cards that generate random numbers
which can be used as keys for linked software or hardware devices.

Create different security levels for your users
and use context –
By passing in a user’s name and level of security, you can create context
based views of data. In this way you can only allow certain people to see
certain levels of data.

Don’t leave breadcrumbs –
Make sure your user’s can’t tell what level they are or see anything in
the web browser that would let them easily. As an easy example, thing
of a web browser that contains the text “userid=1234”. As a smart user, I
might realize that changing my id to “1235” might change my security. As
a rule, you don’t want anyone to have easy access to ways to bypass your
security measures.

Use alternate methods of securing an API –
API key: An API key is a randomly generated, user specific, string of
characters and numbers. Each user on a site will have a unique API key
which can serve to identify them to the site. When a user makes a call or
request to the API, the key is sent along with the request and the API will
use that key and give the user appropriate access. This type of security is
typically used to give users access to related applications. This method
streamlines access for users, but it is not the most secure because the key
can be used by anyone that has it, not just the user it specifics.
Claim space authentication: Claims are basically a piece of information
that tells something about a user. A claim could be the first name, a
last name, or an id. Each application will have its own unique set of
claims for users, and based on the information the claims contain, it
will give appropriate access to the user. Claims are like defining a user
role, but include all information about a user and are therefore more
secure. Generally, each claim also comes with a token, or signature,
of the authentication site. Claims can then be set to expire and then
regenerated so that the token is different every time. Changing any part
of the claim space, including the signature, invalidates the call, making
this method more secure than an API key.

Words: Abbey Vangeloff
Images: Sandi Schwert
Collaborators: Adam Steinert, Patrick Cullen, Chad McKee, Kevin Meech, and Garrett Peterson
Sources: http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf

Not sure where to start? Still have questions?
Yahara has been helping clients with their data needs for over 20 years,
so don’t hesitate to reach out!
yaharasoftware.com

Want to read more from the experts at Yahara?
yaharasoftware.com/news

http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://yaharasoftware.com/
http://www.yaharasoftware.com
http://yaharasoftware.com/news

